Lecture 01: Introduction—

Statistics with Applications

Study Objectives:

- 1. A brief introduction to the genesis of statistics.
- 2. On statistical sampling schemes.
- 3. Examples of application in public health, epidemiology, and biomedical studies.

Applied Math./NCHU: Statistics

What is "Statistics"

(Textbook Sec. 1.5, pp. 3 ~7)

- State
- Granut's mortality table
- Halley's knowledge of 'insurance'
- Numerical science of society and descriptive science of states
- Drawing inferences about individuals from the data
- Important figures: Bernoulli, Gauss, Laplace, Galton, Pearson, Gosset, Fisher, Neyman,....

Sampling scheme, data collection process, and study design

- Goal: to reflect the 'situation' of the true situation (population).
- Possible approaches:
- -- Simple random sampling
- -- Stratified sampling
- -- Cluster sampling
- -- Systematic sampling

Statistics with applications: examples in epidemiology and clinical studies

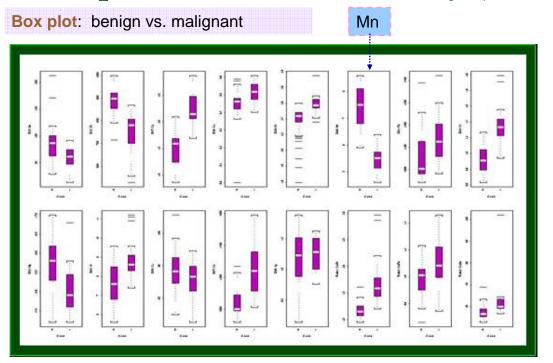
流行病學 (Epidemiology; Webster's dictionary:)

- The branch of medicine dealing with the incidence and prevalence of disease in large populations and with detection of the source and cause of epidemics.
- The **factors** contributing to the presence or absence of a disease.

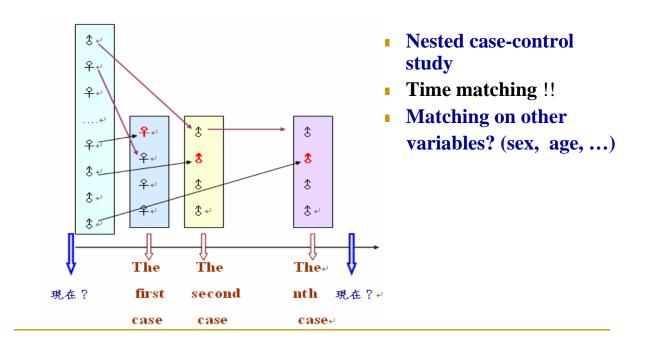
Study Design

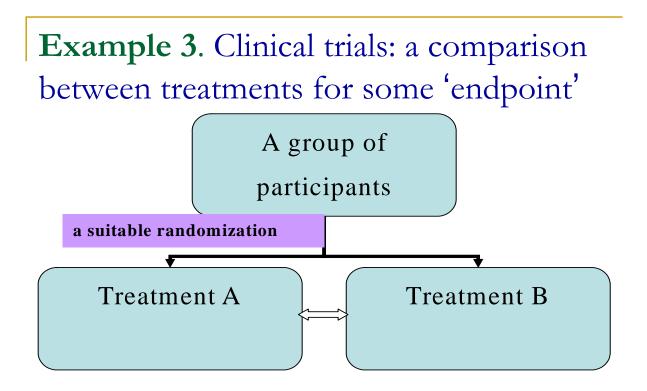
- 橫斷型研究(cross sectional study)
- 病例對照研究法(case-control study)
- 世代(追蹤)研究法(cohort study, follow-up study, longitudinal study)
- 重疊病例對照研究法 (nested case-control study)
- 病例世代研究法 (case-cohort study)

Data types


- baseline : sex, age, height, weight, race, socioeconomic status...(often fixed and can be measured or stated without error.)
- vital data : blood type, genotype or gene polymorphism,...
- biological data : RBC count, WBC count, serum urine, serum cholesterol level, GOT, GPT, blood pressure....often varies in time and measured with small error.)
- qualitative data (obtained from questionnaire) : food intake, exercise, habit, risk taking behavior, attitude,...(often obtained with large error, relies on the interviewer, needs standardization.)

Example 1: Case-control Study


Element	N orm al	Benign	M alignant	P _{NB}	P _{NM}	Р _{ВМ}
S e	99.50±25.83	83.87±33.48	60.94±17.78	< 0.05	< 0.01	< 0.01
Z n	976.7±92.2	884.9 ± 55.5	753.8 ± 86.4	< 0.01	< 0.01	< 0.01
C d	1.13 ± 0.42	1.50 ± 0.34	2.25 ± 0.28	< 0.01	< 0.01	< 0.01
Со	$\textbf{0.49} \pm \textbf{0.08}$	0.46 ± 0.09	0.51 ± 0.05	N S	N S	< 0.01
N i	2.44 ± 0.18	2.37 ± 0.21	2.58 ± 0.11	N S	< 0.01	< 0.01
Mn	9.09±1.25	7.47 ± 0.74	5.50 ± 0.47	< 0.01	< 0.01	< 0.01
F e	1040.4±99.9	1055.8 ± 107.0	1142.5 ± 109.4	N S	< 0.01	< 0.01
C r	$\textbf{0.64} \pm \textbf{0.20}$	0.93 ± 0.17	1.36 ± 0.26	< 0.01	< 0.01	< 0.01
Мg	16.14 ± 0.82	15.70 ± 0.62	15.04 ± 0.62	< 0.05	< 0.01	< 0.01
Al	7.94 ± 1.40	7.66 ± 1.03	8.84 ± 1.00	N S	< 0.05	< 0.01
C a	89.16±7.76	88.53 ± 6.49	86.32±5.49	N S	N S	N S
C u	964.95 ± 70.3	1038.93 ± 82.75	1252.20 ± 150.9	< 0.01	< 0.01	< 0.01
Ag	1.29 ± 0.39	1.15 ± 0.39	1.22 ± 0.31	N S	N S	NS


女性乳癌的診斷 (with hospital controls)

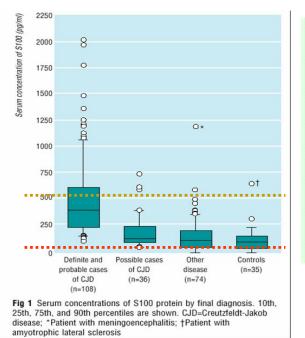
Example 1: Case-control Study (cont'd)

Example 2: A retrospective or prospective cohort study

Example 4: Creutzfeldt-Jakob Disease (庫實氏症, CJD) and S100 protein (as a 'marker' of diagnosis/early detection?)

Diagnosis of Creutzfeldt-Jakob disease by measurement of S100 protein in serum: prospective case-control study

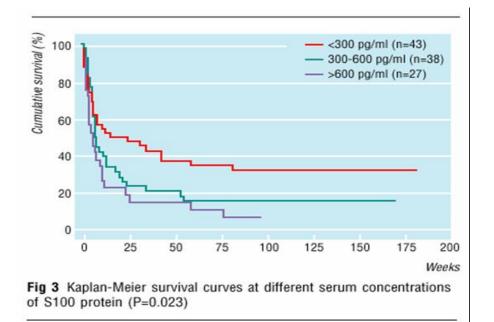
Markus Otto, Jens Wiltfang, Ekkehard Schütz, Inga Zerr, Anke Otto, Annette Pfahlberg, Olaf Gefeller, Manfred Uhr, Armin Giese, Thomas Weber, Hans A Kretzschmar, Sigrid Poser


B¹/1000

Example 4 (cont.): On CJD and S100 protein

Table 3Clinical and electroencephalographic signs andsymptoms of 224 patients with suspected Creutzfeldt-Jakobdisease at time of entry into the study. Values are numbers ofpatients (percentages)

Symptoms	Definite or probable CJD (n=108)	Possible CJD (n=36)	Other disease (n=74)	
Rapidly progressive dementia of <2 years' duration	101 (94)	36 (100)	32 (43)	
Periodic sharp wave complexes on electroencephalography	89 (82)	0	2 (3)	
Myoclonus	93 (86)	26 (72)	26 (35)	
Visual or cerebellar symptoms, or both	90 (83)	34 (86)	31 (42)	
Pyramidal or extrapyramidal signs, or both	72 (67)	32 (89)	38 (51)	
Akinetic mutism	62 (57)	12 (33)	7 (9)	


Example 4 (cont.): Box-plots

Cut-off point?

- To maximize (sensitivity+specificity) (Youden index=
- sensitivity+specificity-1)
- Cut-off point S100=213pg/ml
- Sens.=77.8%
- Spec.=81.1% (Youden index=0.59)

Example 4 (cont.): S100 as a differentiation between survival?

Exercises and Homework

- I. Is 'random sampling' an important mechanism for statistical inferences? Why?
- 2. Please sketch how to conduct a simple random sampling and stratified random sampling from the population of NCHUstudents for answering the question:

"What are the students' opinion towards the Innovation (Reform) on Teaching of NCHU".

Exercises and Homework (cont.)

- 3.Try to give several examples on the applications or possible applications of STATISTICS.
- 4. Textbook exercises: (pp. 7~8)
 - 1, 2, 4, 5